BIOCHEMISTRY

understand biological functions of living of up living things and the changes they go to	_! This field of study uses chemistry to help us rganisms. We will study the molecules that make through, specifically
andor	 •
ORGANIC VS. INORGANIC MO	LECULES
In the context of chemistry, what does it mea	an to be organic?
	composition consists of BOTH and
And maybe	and
	CHO
This is DIFFERENT from how we use the wor	rd ORGANIC in the grocery store, right?
4 TYPES of ORGANIC molecules we	will study in biochemistry include
2)	
3)	
4)	
Inorganic compounds are those WITHC	OUT both Carbon & Hydrogen
Label these molecules as organic or inorga	nic!
1. CH ₄ 2. H ₂ O 4. C ₄ H ₁₁ O ₂₄ N ₈ 5. NaC	3. CO ₂ CI6. C ₁₂ O ₅₆ H ₁₈

CARBOHYDRATES

Contain,	&&
Ratio of carbon to hydrogen to oxygen:	
Carbohydrates are SUGARS. Their names	end with the suffix
Carbohydrates contain calories per g	gram.
FOODS that normally contain carbohydrates includ	e:

 $FUNCTION\ of\ carbohydrates:$

Carbohydrate Type	Example	Structure	Found in
		,	

DIRECTIONS

- 1. UNDERLINE all the ORGANIC substances.
- CIRCLE the names of all the CARBYHYDRATES. 2.
- 3. Leave the inorganic substances alone.

Can some of these substances have a circle (carbohydrate) AND an underline(organic)?

17.

- 1. water 2. carbon dioxide (CO₂)
- 18. potato

meat

an compound with a 2:1 ratio of hydrogen atoms to oxygen atoms

3. rust (iron oxide)

19. rice

34. you

33.

4. protein

- 20. butter
- 5. methane (natural gas, CH₄)
- 21. cheese

6. sucrose

22. cheerios

7. fructose

23. minerals in your bones

8. lipids (fats & oils)

24. vitamins

9. glycogen

25. polysaccharides

10. starch

26. monosaccharides

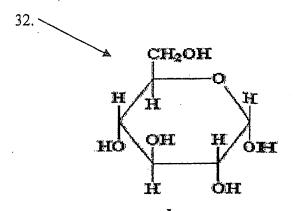
11. cellulose

27. disaccharides

12. a glucose polymer

- 28. maltose
- 13. nucleic acids (DNA & RNA)
- 29. maltase (a protein enzyme)

14. $C_6H_{12}O_6$


30. $C_{12}H_{22}O_{11}$

31.

15. C₄H₈O₂N

bicarbonate ion (HCO₃ ")

16.

can be made from a few repeating units, or can be composed of hundreds or thousands of smaller molecules. Each macromolecule has properties quite different from the units of which it is composed. Study the diagrams below, which show carbohydrate molecules. Beside each molecule, write whether it is a monosaccharide, a disaccharide or a polysaccharide. Then answer the questions.

В.

C.

1. Molecule A is ______. Its function is _____

2. Molecule B is formed from 2 _____ molecules. It is _____

The name of this sugar is ______. (malt sugar)

3. Molecule C is a ______, made from many single sugar molecules. It is

a polymer formed from repeating units called ______. Molecule C's job is

Molecules B and C are made from the chemical process where water is taken out to link molecules together. This process is know as _____

LIPIDS (ex. FATS)

Contain,	, &, &
Then, how can you tell the difference between Ratio of carbon to hydrogen to oxygen is NC	,
Lipids contain calories/gram.	
3 TYPES of lipids include:a) fatsb) oilsc) waxes	
ALL LIPIDS are made from	
1 GLYCEROL molecule and 3 FATTY	ACIDS = 1 LIPID

You can draw them like this:

FUNCTION of LIPIDS

1.

2.

3.

Saturated vs. Unsaturated LIPIDS

Lipid Type	Carbon to Carbon bonds	Phase at Room Temperature	Sources	Healthy or Unhealthy?
Saturated				
Unsaturated				

For each of the following, tell if the statement refers to saturated or unsaturated fats:

١.	Liquid at room temperature
2.	Raíses cholesterol
3.	Decreases cholesterol
4.	Causes heart disease
5.	Found in animal products
6.	Olive oil is an example

Identify the following fat structures as saturated or unsaturated:

Synthesis of a Fat

Each of the following structural formulas shows a fatty acid molecule. On the line after each formula, identify the

PROTEINS

Contain,,,		
Proteins containcalories/gram.	-	
Foods that typically contain proteins include:		····
FUNCTION of PROTEINS		
1.		
2.		
3 ・ 4、	•	
7.		
PROTEINS are longs chains () of		
AMINO ACID		
STRUCTURE — C		
In nature there are only amino acids. Is there a common shape to all proteins?		
is there a common shape to all proteins:		
The of a protein affects its	·	
= to CHANGE a proteín's shape		
a)		
b)	·	
c) d)		
Once a protein is denatured, can it go back to its previous form?	YES/NO	
If we change a protein's shape, can it do its job?	YES/NO	

How will you tell proteins apart from carbohydrates and lipids? PROTEIN STRUCTURE a) primary b) secondary c) tertiary d) quarternary PROTEINS, continued...ENZYMES (a SPECIAL kind of protein)

Enzymes are _______ the rate of chemical reactions.

Enzymes are not ______ during a reaction, so can be used over and over again.

ALL LIVING THINGS use enzymes to control the rate of reactions.

Can we live without enzymes?

YES/NO

Formation of a Peptide Bond

Dipeptide Water

Study the diagram. Then complete the following sentences.

- 1. This is a ____ molecule,
- 2. It is composed of _ joined together by
- 3. A long molecule of this type is a _____

Pro	tein	Rev	iew
		1101	1011

Name:

1. Please list foods that are high in protein.

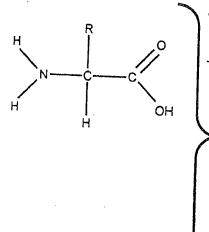
2. Circle the names of the above foods that are also high in lipids.

3. List body parts that are composed mostly of protein.

4. How do our bodies use proteins?

`a)

c)


b)

d)

5. Four elements always found in proteins are ______, _______

__ and ______.

6.

This is a subunit of a protein polymer. It is a(n)

Amino Group = CIRCLE it

Carboxyl Group = SQUARE around it

What does the "R" represent? (circle one)

- a) an element from the periodic table
- b) "R" is for Randell ©
- c) This group varies from amino acid to amino acid. It could be an H, an OH or other combinations of elements.

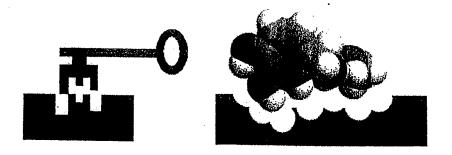
7. If many of the molecules in #6 are bonded together, the result would be called a _____

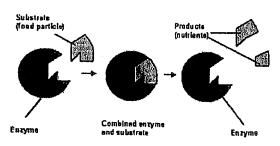
8. Bonds between amino acids are called ______ bond.

9. What process would create the bonds mentioned in #8?

10. What other organic molecules are created by this process?

9. What is left when we cut up a protein into its building blocks?


10. What is the process by which we cut up proteins into their building blocks?


Enzymes

Proteins so special they get their own section!!

Enzyn	mes are	
Enzyn	nes usually end with the suffix	·
Enzyn	nes	, or change the speed of, chemical reactions.
Enzyn	nes are not	during the reaction, so they are used over & over again by our bodies.
Can w	re live without enzymes? YES / NO	
A.	Active Site:	
В.	Substrate:	

C. Lock and Key hypothesis

How enzymes break down food into nutrients

	. ()!!		
),	Fac	tors that effect enzyme function		
	a)	рН		
÷		Optimal pH =		
	b)	Temperature		
		Optimal Temperature =		
	c)	Substrate Concentration		
	d)	Enzyme Concentration		·
	e)	Co-enzymes ()	
		Sometimes enzymes will not work without		
		They connect to the	•	

Read the passage below, which is reproduced from page 41 of your textbook. Answer the questions that follow.

During a chemical reaction, a substance on which an enzyme acts is called a substrate. Enzymes act only on specific substrates. For example, the enzyme amylase assists in the breakdown of starch to glucose. In this reaction, starch is amylase's substrate.

An enzyme's shape determines its activity. Typically, an enzyme is a large protein with one or more deep folds on its surface. These folds form pockets called active sites. An enzyme's substrate fits into an active site.

Step 1: When an enzyme first attaches to a substrate during a chemical reaction, the enzyme's shape changes slightly so that the substrate fits more tightly in the enzyme's active site.

Step 2: At an active site, an enzyme and a substrate interact in a way that reduces the activation energy of the reaction, making the substrate more likely to react.

Step 3: The reaction is complete when products have formed. The enzyme is now free to catalyze further reactions.

Read each question and write your answer in the space provided.

SKILL: Reading Effectively

- 1. Define the two Key Terms contained in this passage.

 2. What substance is a substrate of amylase?

 3. What determines an enzyme's activity?
- 5. What occurs when an enzyme and a substrate interact at an active site?
 - a. activation energy is reduced
 - b. the substrate changes shape
 - c. the enzyme is changed by the reaction
 - d. activation energy is increased

Enzyme Activity						
	1	3	5	7	9	11
			pН			

What is the optimum pH of this enzyme?

Is this an acid pH? YES / NO

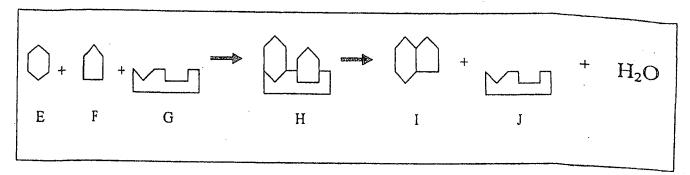
Could this enzyme work efficiently in your stomach?

What happens to the enzyme at pH's above 7?

What other factors affect enzyme reaction rate?

- 10. Match the test with the substance identified by the test
 - ___a) Protein

8.


- ____b) Glucose & other sugars
- ____c) Starch, glycogen & cellulose
- ____d) lipids

- 1. Benedict's test
- 2. Biuret test
- 3. Translucent Spot Test (brown paper)
- 4. Iodine Test

10.

Name:	

In the space at the left, write the letter of the term or phrase that correctly answers the question or best completes the statement. Use the following diagram of a cellular enzyme reaction to answer questions 1-10.

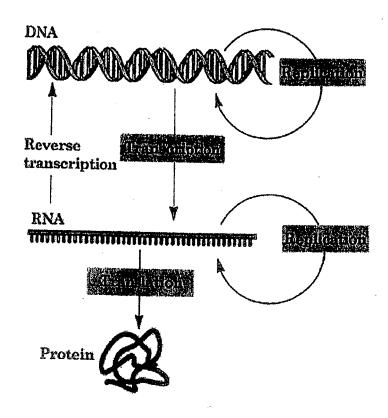
1.	The enzyme is represe	ented by			
	a) E and F	b) G and J	c) H	d) I	
2.	The product (s) of the	reaction is (are)			
	a) E and F	b) H	c) I	d) I and H ₂ O	
3.	During the reaction, b	onds form between			
	a) E and F	b) F and G	c) E and G	d) H and I	
4.	During the reaction, the	he number of substrate	molecules		
	a) increases	b) decreases	c) stays the same	d) cannot be determined	
5.	Activation energy is l	owered at stage			
	a) G	b) H	c) I	d) J	
6.	The molecule of H ₂ O is actually removed at stage				
	a) G	b) H	c) I	d) J	
7.	If energy were needed for this reaction to occur, it would be provided directly by				
	a) a coenzyme	b) heat	c) glucose	d) ATP	
8.	If energy were needed for this reaction to occur (energy needed to enter), the reaction would be				
	a) exothermic	b) anaerobic	d) endothermic	d) aerobic	
9.	The drawing is a good example of the				
	a) raising of activation energyb) lock and key hypothesis		c) aerobic respiration d) ATP cycle		

c) fermentation

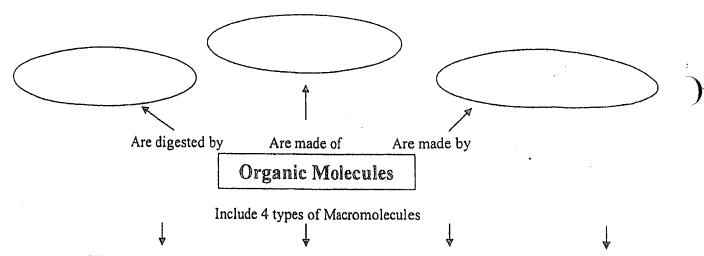
d) dehydration synthesis

The reaction above could be considered an example of

a) the ATP-ADP cycle


b) hydrolysis

Nucleic Acids


Con	tains _			······································	&
Nuc	leic aci	ds contain	calories per gram.		
Nuc	leic Ac	ids are long chain	s () of	*
A.	Con	nposition			
	4		are made up	of	•
	1)				
	2)				
	3)				
			If the	in the nucleotide is deoxyrib	pose, then the nucleic
			acid is called		
			If the	in the nucleotide is ribose, t	hen the nucleic acid is
		. Mim	called		
		Turning 19 Langua ti 1997 Scott revel fore to Major recens			
	Nucleo	otides are Linked (chemical pro		Nucleic Acids are D	igested by
		(chemical pro	(Cess)	(chemical pro	JCESS)
В.	How	do use nucleic a	eids?		
	1.	DNA			
	2.	RNA			
		a)			
		b)		•	
		c)			

Central Dogma in Molecular Biology

codes information (genes) that the cells in an organism use to make

Stay Tuned for more on Nucleic Acids in January/February... ②

	Carbohydrates	Lipids	Proteins	Nucleic Acids
Elements		·		
Calories				
	1	1	1 2	1
Types	2	2	3 4	2
· · · · · · · · · · · · · · · · · ·	3	3	5	
Foods				
· · · · · · · · · · · · · · · · · · ·	1	1	1 2	1
Uses	2	2	3 4	2
	3	3	5	
Made By				
Digested by				
MISC				
Building Blocks				
			·	
Structure				

Biochemistry Review Living Environment

Name: Date:

- 1. Define Organic:
- Put the following terms into the correct column:
 H2O, Protein, Sugar, Salt, Carbohydrate, CO2, Fat, Glucose

Organic	Inorganic		

- 3. When you eat food your body must break these macromolecules down into smaller particles.
 - a. Give two different words to describe this process.
 - b. Give three examples of big molecules that we break down.
 - i. .
 - ii. .
 - iii. .
 - c. Where in your body do these processes occur?
 - d. Once these big molecules are broken down, draw a picture of where they go!
- 4. Once the molecules have been broken down and been absorbed into your bloodstream, the small molecules travel and diffuse into your cells (is that how you answered part d above?). In your cells, these small molecules can be combined and assembled into larger molecules.
 - a. What do we call this process?
 - b. Give three examples of small molecules that can be assembled into bigger ones.
 - i. .
 - ii. .
 - iii. .
- 5. Reactions in our bodies would be too slow to sustain life if we didn't have help. What molecules help speed up our chemical reactions?
 Draw a picture showing how these biological catalysts might speed up a chemical reaction:

6.	Fill	out	this	table:
•	1 111	Jul	(1111)	

Building Blocks	Macromolecule
	Protein
Simple sugars	

7. Using your notes, draw an example of each of the following: (you won't be asked to draw on the test)
Amino acid glucose fatty acid glycerol

and

9. List 4 ways proteins are used in our body.

10. In your own words, explain how the building blocks of food are like a Lego set to our body.